
Under Construction:
A Delphi 2.01 CGI Debugger
by Bob Swart

In Issue 15, we started to explore
the internet and specifically the

world wide web. Our goal back
then was to put the search engine
for The Delphi Magazine Review
Database of Delphi Books
(TDMBKS) onto the web, including
the individual reviews themselves.
We used Delphi 2 to implement a
standard CGI application. In the
following issues, Steve Troxell ex-
plained the difference between
standard CGI and WinCGI and
showed us how to implement The
Delphi Magazine Article Index
Database, TDMAid, using WinCGI.
In this issue, Steve goes on to dis-
cuss developing web applications
using ISAPI.

Writing a CGI application is one
thing. Testing and debugging it is
quite another. A CGI application
runs on a Web Server (such as IIS),
so you cannot test it with only a
Web Browser (such as Netscape
Navigator). This simple fact can
seriously slow down the speed of
development of your CGI applica-
tion, as you need to upload it to
your web server for each little
change you’ve made (and this
means a phone call to your ISP or
at least an ftp-connection to your
web server). As an alternative, you
can set up an Intranet on your LAN,
or buy and install Microsoft
FrontPage, which has a Personal
WebServer that supports CGI
(note: only the official version sup-
ports CGI applications, the latest
beta does not), but I’d rather not
spend money on some tool I’ll only
be using a small part of. Besides,
it’s not invented here!

In order to enhance the flexibility
of Delphi CGI development, this
month we’re going to construct a
small (simple and somewhat lim-
ited) Web Browser which can also
be used to configure and execute
our CGI applications and show us
the results.

Internet Solutions Pack
For those of you who haven’t up-
graded to Delphi 2.01 yet, here’s a
reason to do so: it includes the In-
ternet Solutions Pack, a free set of
(beta) internet ActiveX controls
from NetManage. Sure, they’re
beta, and you need a patch to make
sure they continue working after
June 1997, but even as little toys
you can use them to make a few
much nicer and bigger toys. More-
over, we’re gonna need these con-
trols (or at least the HTML ActiveX
control) for the remainder of this
article, so do yourself a favour and
upgrade now!

The NetManage ActiveX internet
solutions pack consists of eight
ActiveX components in four cate-
gories: basic winsock controls
(TCP and UDP), protocol client
controls (FTP, HTTP, NNTP, POP3
and SMTP), infrastructure controls
and COM objects (internal
classes), and finally web controls
(HTML).

At first sight, this may seem a
wonderful addition to 32-bit Delphi
and Borland C++Builder, as it
opens up the way to the web and
internet for every user. However,
there are some limitations as well,
such as the fact that there’s no
paper documentation provided for
these components (and the on-line
help just doesn’t!). The only
information available is in the help
files provided by NetManage and
the few examples on Borland’s web
site. For our CGI Debugger, we’ll
explore the HTML ActiveX control,
so at the end of this article at least
this component should have a few
less secrets for you.

HTML
If you drop the HTML ActiveX con-
trol on a form and press F1 then
you get the general help for the
Internet Solution Pack compo-
nents. This general help page is

also the entrance to the individual
components’ help files. The HTML
ActiveX control is a visual compo-
nent which you can use to view or
parse HTML pages, and it supports
the following features:
➣ HTML version 2.x plus most

NetScape 2.0 and Explorer 2.0
extensions (but nothing for 3.0);

➣ Inline graphics: GIF, JPEG, BMP,
XBM;

➣ Built-in document retrieval for
HTTP and File URLs;

➣ Built-in HTTP form execution.
Note that it only supports HTML
version 2.x, which means that
frames are not possible! (a pity,
since my home page and HTML
Experts depend a lot on frames).
Tables are supported, however.

Web Browser
To illustrate the initial ease of using
the HTML ActiveX control, let’s do
again what was first shown at the
BDC’96 in Anaheim: build a small
web browser in a few lines of code.
All we need is a ComboBox, a But-
ton, an HTML ActiveX control and
(optionally) a StatusBar. Drop
them on a Form (or the first page of
a PageControl). We can pre-fill the
ComboBox with a list of possible
sites (our favourite bookmarks, for
example) or just enter a new URL
into it. Whenever we click on the
button, the URL is given to the
HTML ActiveX control, which is
then requested to get the docu-
ment as shown in the JumpBtnClick
method in Listing 1.

The StatusBar here consists of
two panels: one for the OK/BAD
status of the URL and the second
one for a longer message, such as
the URL itself or the connection
process. If we want to show the
URL of the document which is cur-
rently being retrieved in the sec-
ond panel of the StatusBar, we can
use the OnDoRequestDoc event han-
dler of the HTML ActiveX control

20 The Delphi Magazine Issue 19

for this as shown in HTML1Do-
RequestDoc in Listing 1.

At the end of the entire process
of retrieving, parsing and display-
ing the document, the OnEndRe-
trieval event handler is called
(automatically). We can use this
event handler to display the fact
that we’ve just successfully re-
trieved and displayed the URL. See
HTML1EndRetrieval in Listing 1.

In case an error occurs while re-
trieving the document, the OnError
event handler is called, which we
can use to display the error (bad)
status for the URL. See HTML1Error
in Listing 1. Of course, all kinds of
errors can occur, which is why this
event handler has so many parame-
ters. Most often, however, the
document simply cannot be found
(BAD URL), so we won’t go any
deeper into the HTML error codes
at this time.

Local URLs
Normally, a URL consists of some-
thing that starts with http:// to
show we want to retrieve a docu-
ment from the internet. But what if
we want to view a document from
the network or even a local disk? In
that case we need to start the URL
with file:/// and the filename,
such as file:///d:/www/home.htm.
Assuming that the local file
home.htm contains the HTML file
with the TDMBKS on-line CGI-
FORM, our home-made Web
Browser would display it as shown
in Figure 1.

Hardly any difference from a
‘real’ browser, right? Well, just
wait, it gets even better (you did
notice the other three tabs on the
PageControl, right?). There’s only
one reason why I’m not using the
HTML ActiveX control to write my
own real Web Browser: it doesn’t
support HTML 3.0 (no frames), nor
does it support any of the Netscape
3.0 or Explorer 3.0 extensions.
Unfortunately, I don’t know if the
HTML ActiveX control will be
upgraded to include enhanced
HTML support.

HTML Forms
Now that we’ve played a little with
the HTML ActiveX control and its
events, let’s take a look at its

properties. One seems to be
especially useful for our CGI Debug-
ger: the Form property. This is a
collection of the forms which are
contained in the HTML page. Unfor-
tunately, the type of this property
seems to be an array of Variants,
with almost no documentation on
the real contents or how to get to
it. The only thing I could find out
was the fact that the Forms class has
a Count property for the number of
Forms inside the HTML page, and an
Item (default) index property to get
to the individual Forms themselves.
As for the Form Variant itself, it has
three properties: Method (GET or
POST), URL (the CGI program that’s
being called) and URLEncodedBody
which contains the data that is sent
to the Web Server.

This all sounds great in theory.
However, in practice it seems that
you really can’t get any useful infor-
mation out of the Forms property

before you actually submit a form.
And in order to be able to test,
debug or configure a local CGI ap-
plication, it would be nice to get at
least some information before-
hand, like the URL of the remote
CGI application to execute.

The only solution I could find
was to get to the source of the
HTML page itself. Fortunately, the
HTML ActiveX control has another
useful property which does work,
the SourceText property of type
String which contains the entire
document. Of course, this property
only has a valid value right after the
retrieval and parsing of the docu-
ment is done. So, we can modify the
OnEndRetrieval event handler to as-
sign the SourceText to a TMemo as
shown in Listing 2.

Let’s assume that this Memo is
placed on the second page of the
PageControl, then the result of re-
questing the home.htm page with the

procedure TDebugCGI.JumpBtnClick(Sender: TObject);
begin
 StatusBar.Panels[0].Text := ’@’; { progress }
 if ComboBox.Text <> ’’ then
 HTML1.RequestDoc(ComboBox.Text)
end;
procedure TDebugCGI.HTML1DoRequestDoc(Sender: TObject; const URL: string;
 const Element, DocInput: Variant; var EnableDefault: Wordbool);
begin
 StatusBar.Panels[0].Text := ’@@’; { progress }
 StatusBar.Panels[1].Text := ’Contacting ’ +URL
end;
procedure TDebugCGI.HTML1EndRetrieval(Sender: TObject);
begin
 StatusBar.Panels[0].Text := ’OK’; { success }
 StatusBar.Panels[1].Text := HTML1.URL;
end;
procedure TDebugCGI.HTML1Error(Sender: TObject; Number: Smallint;
 var Description: string; Scode: Integer; const Source, HelpFile: string;
 HelpContext: Integer; var CancelDisplay: Wordbool);
begin
 StatusBar.Panels[0].Text := ’BAD’; { error }
 StatusBar.Panels[1].Text := HTML1.URL;
end;

➤ Listing 1

➤ Figure 1

22 The Delphi Magazine Issue 19

TDMBKS CGI Form looks like Figure
2. This clearly shows the (high-
lighted) line we’re looking for: the
FORM ACTION part which contains
the ACTION URL of the remote CGI
application that is to be executed.
In this case, it’s the TDMBKS CGI
application at http://www.del-
phimag.tpower.com/tdmbks.exe and
the method used is POST.

To get the value of the ACTION
URL, we just have to scan the con-
tents of the Memo for a line that con-
tains the sub-string ACTION=. We
can best do this in the OnEndRe-
trieval event handler again, right
after we’ve set the contents of the
Source Memo, as shown in Listing 2.

Note that we stop looking for an
ACTION URL as soon as we’ve found
the first one. In theory, an HTML
page could contain more than one
CGI Form (in fact, Steve showed us
a standard CGI form and WinCGI
form on the same HTML page back
in Issue 16). However, in these rare
cases, we should be able to split

the HTML page into sub-pages,
where each page contains one CGI
Form only. Since multiple CGI
Forms on an HTML page do not
influence each other, it is not nec-
essary for testing and debugging
purposes to keep them together.

CGI Options
Now that we have obtained the re-
mote ACTION URL, it’s time to specify
some additional CGI options. First
of all, the main purpose of this CGI
Debugging tool is be to be able to
debug a CGI application while it’s
on our local disk, rather than exe-
cuted on a remote web server. So,
we must show the remote ACTION
URL and then ask for the name and
location of the local CGI ex-
ecutable. By default, we’ll take the
filename part from the ACTION URL
and assume the executable will be
on the PATH or in the current direc-
tory (the user can enter another
executable or browse the disk).
Once the local CGI application is

known, we can execute it on our
local machine, just like any other
local executable, using WinExecAnd-
Wait (so we wait until it’s done). We
only need to supply it with the in-
put it expects, and for that we need
to specify the specific type of CGI
application we’re dealing with.

There are at least two different
forms of CGI, standard CGI and a
higher level called WinCGI. As we
learned in Issue 15, the first format
uses environment variables and
the standard input and output files,
and (as shown in Issue 16) the
latter uses a Windows INI format
file that specifies the names for the
input and output files to communi-
cate between the Web Browser and
the Web Server. Delphi 2 CGI appli-
cations are typically non-visual
command-line or CONSOLE applica-
tions, where the input contains the
information (request) sent by the
client and the output is the dy-
namic HTML document which is
generated on the fly (and sent back
to the Web Browser).

So, we need to know what type of
CGI application we’re about to de-
bug. Since we want to set up the
information to run the application
locally and we can’t just smell or
guess what type it is, the user must
specify the type. In the case of a
WinCGI application we also need to
specify the name of the INI file
where the information is stored.

Three edit controls are used for
the remote CGI executable, the lo-
cal CGI executable and (if required)
the INI file for the WinCGI ex-
ecutable. If the contents of the edit
field for the remote CGI changes,
the contents of the local CGI and INI
file fields change as well. The same
holds for changes in the local CGI
application, which are reflected
automatically in the name of the INI
file. This is implemented by con-
necting the OnChange events of the
first two edit fields to set the text of
the latter two edit fields as shown
in Listing 3.

RemoteCGIChange extracts the EXE
name from the remote CGI applica-
tion and assigns it to the local CGI
application, while LocalCGIChange
just changes the filename exten-
sion from the local CGI application
to INI for the INI file.

➤ Figure 2

procedure TDebugCGI.HTML1EndRetrieval(Sender: TObject);
var Str: ShortString;
 i: Integer;
begin
 StatusBar.Panels[0].Text := ’OK’;
 StatusBar.Panels[1].Text := HTML1.URL;
 Source.Lines.Clear;
 Source.Lines[0] := HTML1.SourceText;
 i := 0;
 Str := ’’;
 repeat
 Str := UpperCase(Source.Lines[i]);
 if Pos(’ACTION=’,Str) > 0 then begin
 Str := Copy(Source.Lines[i],Pos(’ACTION=’,Str)+8,255);
 Delete(Str,Pos(’"’,Str),255)
 end else
 Str := ’’;
 Inc(i)
 until (i >= Source.Lines.Count) or (Length(Str) > 0);
 RemoteCGI.Text := Str
end;

➤ Listing 2

March 1997 The Delphi Magazine 23

This leaves us with one last CGI
configuration option. In the real
world, executing a CGI application
(on a Web Server) costs a certain
amount of time. To simulate this,
we can use a SpinButton to set the
number of milliseconds our CGI De-
bugger waits until the resulting
form is shown again. As I found the
HTML ActiveX control to be some-
what less reliable when trying to
read the resulting file too soon (ie
right after the WinExecAndWait), it’s
not a bad idea to wait at least a few
milliseconds anyway.

All these options can be set in
the CGI Options page, shown in
Figure 3.

Submit
Now we’re ready to do something
with all the information we’ve col-
lected. Only one question remains:
how do we know when the user has
pressed the Submit button on a
Form in an HTML Page? For this, we
need to take another look at the
HTML ActiveX control in the Events
page of the Object Inspector.

Fortunately, there’s one impor-
tant event left that we can make
good use of: OnDoRequestSubmit.
This event is also the exact mo-
ment where the HTML.Forms prop-
erty gets its value (which is why we
couldn’t use it before). The OnDoRe-
questSubmit event handler gets the
ACTION URL as an argument and the
URLEncodedBody in the Form Variant
argument. For a standard CGI appli-
cation (where RadioGroup.ItemIn-
dex has a value of zero), we just
need to dump the Form.URLEncoded-
Body data into a file (called data),
and set two environment variables
(REQUEST_METHOD and CONTENT_LE-
NGTH) before we can execute the
local CGI application. One way to
do that is to generate a batch file
that first sets the environment vari-
ables and then calls the executable
with the data file as standard input,
redirecting the output to a file
called output.htm. See Listing 4.
[Shock, horror: Dr.Bob doing a quick
and dirty DOS hack?! Editor].

This approach makes sure no en-
vironment variable values are left
when the CGI application returns.
It assumes that the environment
variable COMSPEC is defined and

uses that to obtain the location of
COMMAND.COM. The /C argument
makes sure that COMMAND.COM
just executes the specified cgi.bat
command and then returns.

Action!
It’s time to test our first local stand-
ard CGI application, TDMBKS.EXE,

on a form that has been filled with
some information (Figure 4). Click-
ing on the Get Result button would
normally send the information to
the Web Server, which in its turn
will start the TDMBKS.EXE applica-
tion (from the Form’s action infor-
mation) with the information that
was filled in in this form. In this

procedure TDebugCGI.HTML1DoRequestSubmit(Sender: TObject; const URL: string;
 const Form, DocOutput: Variant; var EnableDefault: Wordbool);
var f: System.Text;
 Exe: String;
begin
 if RadioGroup.ItemIndex = 0 then begin
 { standard CGI }
 System.Assign(f,’data’);
 Rewrite(f);
 writeln(f,Form.URLEncodedBody);
 System.Close(f);
 System.Assign(f,’cgi.bat’);
 Rewrite(f);
 writeln(f,’set REQUEST_METHOD=POST’);
 writeln(f,’set CONTENT_LENGTH=’,Length(Form.URLEncodedBody));
 writeln(f,LocalCGI.Text,’ < data > output.htm’);
 System.Close(f);
 Str := ’COMMAND.COM’;
 with TBDosEnvironment.Create(Self) do
 try
 Str := GetDosEnvStr(’COMSPEC’);
 finally
 Free
 end;
 Str := Str+’ /C ’+ExtractFilePath(Application.ExeName)+’cgi.bat’
 end;
 WinExecAndWait(PChar(Exe),SW_NORMAL);
 ComboBox.Text := ’file:///output.htm’;
 Timer.Interval := SpinEdit.Value;
 Timer.Enabled := True
end;

➤ Listing 4

procedure TDebugCGI.RemoteCGIChange(Sender: TObject);
var
 Str: ShortString;
 i: Integer;
begin
 Str := RemoteCGI.Text;
 i := Length(Str);
 while (i > 0) and (Str[i] <> ’/’) do Dec(i);
 if i > 0 then Delete(Str,1,i);
 LocalCGI.Text := Str { just the EXE-name }
end;
procedure TDebugCGI.LocalCGIChange(Sender: TObject);
begin
 IniFileName.Text := ChangeFileExt(LocalCGI.Text,’.INI’)
end;

➤ Listing 3

➤ Figure 3

24 The Delphi Magazine Issue 19

case that would be:

DELPHI="2"
LEVEL="3"
TITLE=""
AUTHOR="Bob_Swart"
PUBLISHER=""
ISBN=""

Note that spaces are replaced by
underscores.

Using our CGI Debugger, how-
ever, the OnDoRequestSubmit event
handler is fired, and our code is
executed, which results in the
following one-line data file:

DELPHI=2&Level=3&Title=
 &Author=Bob_Swart
 &Publisher=&ISBN=

and a corresponding three-line
CGI.BAT file:

set REQUEST_METHOD=POST
set CONTENT_LENGTH=57
tdmbks.exe < data > output.htm

The local TDMBKS.EXE local CGI
application is able to process the
passed information, perform the
query and generate a dynamic
HTML page on its standard output.
Normally, the Web Server will then
pass this dynamically generated
HTML page back to the Web
Browser which will show it as the
resulting page to the client. In our
Debugger, however, we know that
the resulting output file is called
OUTPUT.HTM, so when the
CGI.BAT file has ended execution

(we used WinExecAndWait), we only
have to retrieve and display the
local file OUTPUT.HTM, or in URL
terms file:///output.htm, which is
as shown in Figure 5.

As you can see at the top, the CGI
application generates some special
information (including CONTENT-
TYPE) which is normally needed to
inform the web server and browser
what kind of file is received. The
HTML ActiveX control just ignores
this information and displays it as
plain text. It doesn’t matter as long
as we can see what we’ve just gen-
erated. We can re-load the original
local document at file:///home.htm
and try the CGI application again
and again. And we can make modi-
fications in the CGI application and
test it again. All without having to
upload it to the web server. We can
even test CGI applications on a
portable PC with this tool (so you
can give demonstrations showing
sample CGI applications without
having to set up a real internet con-
nection, LAN intranet or personal
web server).

Testing WinCGI
For a WinCGI executable, we need
to perform other actions inside the
DoRequestSubmit event handler (re-
member that the checked property
of the CGI-type RadioGroup will tell
us which type of CGI executable
we’ve selected). For a WinCGI ex-
ecutable, we need to create an INI
file with three sections: one for
[cgi], one for [System] and one for
[Form Literal]. The first one

contains the length of the URLEncod-
edBody string, the second contains
the name of the output file (the
OUTPUT.HTM file where the result-
ing HTML page needs to be writ-
ten), while the third contains the
URLEncodedBody, split up into the in-
dividual fields with their values.
See Listing 5.

This time, the command to exe-
cute simply consists of the local
CGI application followed by the
name of the INI file as a command
line argument. This way, the
WinCGI application can read the INI
file and simply obtain the required
information from it (as Steve
showed back in Issue 16).

As we saw earlier in the standard
CGI data file, the URLEncodedBody
consists of each field, followed by
an =, followed by the value of the
field, separated by an & sign. This
means that we just have to split the
URLEncodedBody into sub-parts that
are separated by & and write the
sub-parts as simple strings (they
are already in INI file format for us,
which saves us some additional
work). The resulting INI file for the
same query we saw with the
standard CGI example in Listing 6.

Normally, a lot more information
is passed in the INI file for a WinCGI
application. However, I personally
have found that most of this infor-
mation is just generated and
passed and not really used by (or
useful for) the WinCGI application,
so instead of trying to mimic a
WinCGI web server, let’s just make
sure we can test our applications.

➤ Figure 5➤ Figure 4

March 1997 The Delphi Magazine 25

Enhancements
Now that we can configure and test
standard CGI and WinCGI applica-
tions, what’s next? Well, we could
include a CGI Data page on the
PageControl, listing the same infor-
mation that is generated for the
standard CGI or WinCGI applica-
tions, and maybe a special Debug
Info page where we could list and
trace each step (like looking up a
new URL). We could even include
an option to view and modify the
CGI data before it’s actually sent to
the local CGI application, so we can
test and monitor the behaviour of
our CGI applications exactly.

A few of these ideas, along with
some other enhancements, will be
implemented in the next version of
this free utility, which I have named
IntraBOB (Hey, it’s for free, so I can
pick the name, right?!). Check my
home page, as by the time you read
this it should be available.

Conclusion
I hope to have shown that we can
not only write, but also configure
and test, CGI applications using
Delphi 2 in a fairly straightforward
manner. Full source code is avail-
able on this month’s cover disk,
including the source code for
WinExecAndWait, Delay and the
TBDosEnvironment component used
in this utility. If you have any expe-
rience, trouble or interesting ideas
about internet development using
Delphi, don’t hesitate to send me a
message at bob@bolesian.nl.

Bob Swart (home.pi.net/~drbob/)
is a professional knowledge engi-
neer technical consultant using
Delphi and C++ for Bolesian
(www.bolesian.com), free-lance
technical author for The Delphi
Magazine, and co-author of The
Revolutionary Guide to Delphi 2.
Bob is now co-working on Delphi
Internet Solutions, a new book
about Delphi and the internet. In
his spare time, Bob likes to watch
video tapes of Star Trek Voyager
and Deep Space Nine with his 3-
year old son Erik Mark Pascal and
his 4-month old daughter Natasha
Louise Delphine.

procedure TDebugCGI.HTML1DoRequestSubmit(Sender: TObject; const URL:
 string; const Form, DocOutput: Variant; var EnableDefault: Wordbool);
var
 f: System.Text;
 Str: String;
 i: Integer;
begin
 if RadioGroup.ItemIndex = 0 then begin
 { WinCGI }
 System.Assign(f,IniFileName.Text);
 Rewrite(f);
 writeln(f,’[cgi]’);
 writeln(f,’URL=’,URL);
 writeln(f,’Content Length=’,Length(Form.URLEncodedBody));
 writeln(f);
 writeln(f,’[System]’);
 writeln(f,’Output File=output.htm’);
 writeln(f);
 writeln(f,’[Form Literal]’);
 Str := Form.URLEncodedBody;
 i := Pos(’&’,Str);
 while (i > 0) do begin
 writeln(f,Copy(Str,1,i-1));
 Delete(Str,1,i);
 i := Pos(’&’,Str)
 end;
 System.Close(f);
 Str := LocalCGI.Text + ’ ’ + IniFileName.Text
 end;
 WinExecAndWait(PChar(Str),SW_NORMAL);
 ComboBox.Text := ’file:///output.htm’;
 Timer.Interval := SpinEdit.Value;
 Timer.Enabled := True
end;

[cgi]
URL=http://www.delphimag.tpower.com:80/tdmbks.exe
Content Length=57

[System]
Output File=output.htm

[Form Literal]
DELPHI=2
Level=3
Title=
Author=Bob_Swart
Publisher=

On our Web site:
http://www.iteckuk.com

Don’t forget to visit our Web site regularly to keep
up to date. Here’s some of what you can find:

➤ Updated program and data files for TDMAid, the Article
Index Database.

➤ TDMaid Online for immediate access!

➤ The Delphi Magazine Book Review Database: online and
downloadable versions.

➤ Is your companion disk dead? The source and example files
from the articles for the last few issues are here for download.*

➤ Details of what’s coming up in the next issue.

➤ Back issues: contents and availability details.

➤ Sample articles from back issues.

➤ Links to other great Delphi sites.

* Do also contact us so we can send you a new disk.Sorry, the shareware/freeware

bonus files are not included in these downloads as we have very limited Web space.

➤ Below: Listing 6➤ Above: Listing 5

26 The Delphi Magazine Issue 19

	Internet Solutions Pack
	HTML
	Web Browser
	Local URLs
	HTML Forms
	CGI Options
	Submit
	Action!
	Testing WinCGI
	Enhancements
	Conclusion
	On our Web site:

